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Abstract

In this report, we present the work done towards the semester project for the CS660 -
Machine Learning course. As mentioned in our proposal1, we attempted to combine
the efficiency and effectiveness of a novel Structured State Space Model, called
“Mamba” [1] on long-range sequence modeling, with message-passing graph neural
networks. We did so by devising a new state update method for the embeddings
of the graph nodes. In the midway submission2, we reported our results on the
Planetoid [2] dataset, along with several ablation experiments that revealed some
interesting issues with our approach. In particular, we faced issues with deeper
models and ineffectiveness of Mamba on static graphs. In this project update,
we conduct more experiments on static graphs, specifically to test the viability
of deeper models, alongside extending the approach to work on spatio-temporal
or dynamic graphs. We discuss the model’s performance on dynamic graphs and
outline future work.

1 Introduction

1.1 A Refresher on Graph Neural Networks

We begin by reviewing the basics of GNNs, particularly Message Passing Neural Networks (MPNNs)
[3]. First, let us introduce the mathematical notation we use throughout this work. Let G = (V, E)
denote a graph with vertex (node) set, V and edge set, E . Let N = |V|. For simplicity, we assume
that the graph is undirected and unweighted, but the methods we discuss in this report are easily
extensible to directed and weighted graphs. We use N [i] to represent the closed set of neighbors of
node i. Moreover, let X ∈ RN×F be the node feature matrix, where F is the number of features per
node, i.e., X = [x1, x2, . . . , xN ]T , where xi ∈ RF . It should be noted that, in set notation, X and
intermediate feature maps are multisets, as two nodes can have identical features. We use A ∈ RN×N

to denote the graph’s adjacency matrix.

Message Passing Neural Networks (MPNNs) MPNNs are a class of GNNs that aggregate &
update node features based on the features of their neighbors. The following set of iterative steps
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Figure 1: Application of a Message-Passing GNN layer, shown for one node (Taken from [4])

defines these models:
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Here, l denotes a particular GNN layer, h(l)
i is the hidden state of node i at layer l, m(l)

i is the “message”
generated for node i using the hidden states at layer l, and a

(l)
i denotes the aggregated message for

node i at layer l. The functions MESSAGE, AGGREGATE, and UPDATE are typically parameterized by
neural network layers, such as multi-layer perceptrons (MLPs) and are shared across all nodes in the
graph. Figure 1 illustrates these. The final output is obtained by applying a READOUT function to the
final hidden states, i.e., O = READOUT({h(L)

i : i ∈ [N ]}), where L is the number of layers in the
GNN, at either node or graph level, depending on the task at hand, which can be node classification,
graph classification, etc.

Since graph data is naturally unordered [5], i.e., the elements of V are unordered, the neural network
layers representing the functions mentioned above that operate on node features must be permutation-
invariant [5]. In fact, the primary reason to learn on graphs is the inductive bias or symmetry that
graph data is inherently order-independent. As such, MPNNs usually enforce that AGGREGATE
remains permutation-invariant by using functions such as sum, mean, or max for fixed (unlearned)
aggregation or by combining these with learned weights.

1.2 Related Works

In practice, different MPNN variants, such as Graph Convolution (GCN) [6], Gated Graph Convo-
lution (GGSNN) [7], GraphSAGE [8] and Graph Attention (GAT) [9, 10] or Graph Transformers
[11], differ mainly in the way they define the functions – MESSAGE, AGGREGATE, and UPDATE, and
hence, in the way they collect and update the node features. For instance, GCN updates node features
via a first-order approximation of spectral graph convolutions in a way quite similar to fixed image
convolution kernels; GGSNN uses the Gated Recurrent Unit update for node features, followed by a
neighbourhood sum aggregation, while GraphSAGE trains a set of aggregator functions operating
on different hops on sampled node neighbourhoods. In contrast, Graph Attention (GAT) uses a
self-attention mechanism on node neighborhoods with sum aggregation.

As discussed by Xu et al. [12], all of the aforementioned models are at most as expressive as
the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test. This becomes particularly problematic
for graph data with long-range dependencies, e.g., in many real-world applications, such as social
network analysis, recommendation systems, bioinformatics, or when learning on heterophilic graphs.
Moreover, approaches like GAT or Graph Transformers, which can technically model long-range
dependencies as long as multi-hop neighborhoods are considered, are hampered by the O(N2)

2



vt+H…
vt…

wij

vt-M+1

Time

Figure 2: A dynamic (spatio-temporal) graph with node features changing with time (Taken from
[13])

complexity scaling of the attention mechanism, which makes them infeasible for large graphs. In
particular, Graph Transformers treat graphs as a sequence of nodes, much like sequences of tokens in
natural language processing, and process nodes within pre-defined context windows. To mitigate the
quadratic complexity of attention, they usually perform ‘attention sparsification’, where nodes are
subsampled prior to computing attention scores.

Message Passing Graph Neural Networks (GNNs) have also been extended to dynamic or spatio-
temporal graphs. In these cases, the graph-structured data includes a temporal dimension with
changing node and/or edge features over time (Fig. 2). Extending MPNNs to such scenarios typically
involves utilizing architectures like GCN for spatial dependencies and flavours of sequence modeling
networks like Recurrent Neural Networks (RNNs), such as Gated Recurrent Unit (GRU) or Gated
Linear Unit (GLU), for inter-graph temporal dependencies. For instance, the Diffusion Convolutional
Recurrent Neural Network (DCRNN) [14] utilizes GCN for spatial convolution and RNNs for tempo-
ral dependencies. Other methods like Spatio-Temporal Graph Convolutional Networks (STGCN)
[13] and Graph WaveNet (GWN) [15] combine graph convolutions with (dilated) causal convolutions
to extract spatial-temporal dependencies simultaneously. Spatial-Temporal Synchronous GCNs
(STSGCN) [16] capture localized spatial-temporal correlations synchronously by treating small
batches of graph-states and employing message-passing between nodes across time-steps. Adaptive
Graph Convolutional Recurrent Network (AGCRN) [17] handles edge features via adaptive parameter
learning and models the sequence of graph-states using the GRU mechanism. Spatio-Temporal
Wavelet NN (STWave) [18] introduces a disentangle-fusion framework to address distribution shift,
decoupling traffic data into stable trends and fluctuating events modeled by a dual-channel spatio-
temporal network. It incorporates novel query sampling and graph wavelet-based positional encoding
into an attention-sparsified spectral graph attention network for efficient dynamic spatial correlation
modeling. Spatio-Temporal Adaptive Embedding Transformer (STAEformer) [19] focuses on gener-
ating input embeddings for feature modalities and fusing them prior to passing through temporal and
spatial transformer blocks. While not explicitly a graph-based approach, STAEformer is the current
state-of-the-art on several traffic forecasting graph datasets.

It is clear that there is a trend here of using MPNNs to model the spatial dependencies, while
leveraging some form of a seq2seq model to handle the temporal behaviour. Mamba, being an SSM
(very similar to an RNN), is well-suited to such a task. Additionally, it has proven to be capable of
handling long-range dependencies without many of the downsides of RNNs. In the next sections, we
discuss Mamba, a new time-varying state-space model proposed recently by Gu et al. [1], that comes
equipped with a ‘selection’ mechanism, that scales linearly with sequence length and how we can
adapt it for MPNNs.

2 Selective State Space-based Sequence Modeling via Mamba

Recently, Gu et al. [1] proposed a novel sequence modeling framework, based on structured state
space models (SSM), with a selection mechanism, called Mamba, that is capable of learning long-
range dependencies in sequential data in an input-dependent manner. SSMs relate a continuous input
sequence, x(t) ∈ R, to a continuous output sequence, y(t) ∈ R, through an implicit latent state,
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h(t) ∈ Rd, using the following first-order ordinary differential equation:

h′(t) = Ah(t) +Bx(t) (4)
y(t) = Ch(t) +Dx(t) (5)

Here, A ∈ Rd×d, B ∈ Rd×1, C ∈ R1×d, and D ∈ R are the state transition matrix, the input
matrix, the output matrix, and the feedforward matrix, respectively. We omit D going forward, as it is
usually modeled as a skip connection. As we work with discrete data, these equations, and hence, the
associated parameters, are discretized using Zero-Order Hold (ZOH) to obtain the following update
(recurrence) equations:

Ā
ZOH
:= exp(∆A) (6)

B̄
ZOH
:= (∆A)−1(exp(∆A)− I) ·∆B (7)

ht = Āht−1 + B̄xt (8)
yt = Cht (9)

Here, xt, yt ∈ RF , the subscript, t, is the time step along the sequence, and ∆ denotes a learned
(adaptive) discretization step size. In contrast with prior SSM architectures, in Mamba, the ∆
parameter is made input-dependent, which indirectly makes A,B & C input-dependent, using the
following learned projections:

B ← sB(x) = LinearN (x) (10)
C ← sC(x) = LinearN (x) (11)

s∆(x)← BroadcastD(Linear(x)) (12)
∆← softplus(Parameter+ s∆(x)) (13)

Ā, B̄ ← ZOH(∆, A,B) (14)

These specific choices have been made due to a connection to the RNN gating mechanism for
particular s∆ and τ∆ (cf. Theorem 1 in [1]). Here, ∆ acts as a gating, or what the Mamba authors
term as a selection mechanism, that decides which parts of the input and the latent space are relevant to
the current output, and hence, imparts shift-variant context-awareness to the Mamba block, allowing
it to focus on or filter out different aspects or features of the input sequence, thereby, learning
time-varying long-range dynamics. In addition, the state transition matrix, A, is “structured” as
a diagonal matrix to stabilize the state update over long sequences and simplify the computation,
because a diagonal A makes the discretization (exponentiation) trivial to calculate. Several fixed
initializations exist for A. They are reasoned via the HiPPO theory [20], which allows these structured
SSMs to memorize the input history in a controlled manner. The latent state, h(t), is responsible for
storing “compressed context” (h is d-dimensional, where d≪ L, the sequence length), as opposed
to a transformer’s full uncompressed context, which leads to Mamba’s high efficiency. In general,
Mamba’s computational complexity only scales as O(L) as opposed to O(L2) for transformer-based
approaches. Finally, a clever hardware-aware implementation of an associative scan algorithm for
the recurrence enables efficient training on modern hardware, making Mamba a practical choice
for sequence modeling tasks. Figure 3 depicts a typical Mamba block, where the input is linearly
projected (“state expansion”) before passing through a short 1D depth-wise convolution and the
main SSM update, with interleaved non-linearities. The final output of the block is a deflating linear
projection. The structure of this block is inspired by the vanilla transformer and its simplifications
used in prior SSM architectures (See the discussion in [1]).

3 Our Approach – Expressive Graph Mamba (EGM)

In this section, we describe how we integrate the Mamba block into a GNN to obtain what we call the
“Expressive Graph Mamba” (EGM) layer, based on the discussion in previous sections, particularly
on Mamba in Section 2. Now, let us delineate our Expressive Graph Mamba layer. Like other MPNN
variants, we redefine one of the MPNN iterative steps – UPDATE. We start by considering a sequence
of graph representations at different time steps, i.e., X0, X1, . . . , XL, where X0 = X is the initial
node feature matrix, and L is the number of time steps (a hyperparameter). If edge attributes are
present, they can be easily added to either X or the adjacency matrix, A. We use a shared Mamba
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Figure 3: A Mamba Block [1] with state expansion (Linear(·))

block to update the node features at each time step, thereby leveraging the selection mechanism to
allow the model to self-select the relevant aspects of the node features. Node features at time step 0,
i.e., X0 = [x0

1, . . . , x
0
N ]T form the input to our model. Then, for each node, xi ∈ RF (where F is

the number of features per node), we proceed as follows:

UPDATE via Mamba block:
h
(t+1)
i = Āht

i + B̄xt
i (15)

y
(t+1)
i = Cht

i (16)

Here, h ∈ Rd, where d denotes the model dimension, and y ∈ RF is the output of the Mamba block.
The parameters, Ā, B̄, C, are shared across all nodes in the graph and are learned during training
(via the discretization, ∆, for Ā and B̄). Here, we can choose to evolve the hidden states for a fixed
number of time steps, say T , before passing the output to the following AGGREGATE step. This can
be understood as a form of warmup for the Mamba block, similar to warmup for certain RNN or
attention-based models.

The aggregation of node features in our case can be learned or fixed, e.g., using the usual sum, max,
or mean aggregation. For learned aggregation, we combine the Mamba update with a shared attention
mechanism, in the same vein as GAT or GATv2 [9, 10], reinforcing the model’s ability to capture
long-range dependencies in graph-structured data.

AGGREGATE via shared attention

αij =
exp

[
σ
(
a⃗(t+1)T

[
W (t+1)y

(t+1)
i ||W (t+1)y

(t+1)
j

])]
∑

k∈N [i] exp
[
σ
(
a⃗(t+1)T

[
W (t+1)y

(t+1)
i ||W (t+1)y

(t+1)
k

])] (17)

x
(t+1)
i := y

(t+1)
i = ρ

 ∑
j∈N [j]

αijW
(t+1)y

(t+1)
j

 (18)

Here, W (t+1) ∈ RF×F is a shared weight matrix, which transforms the output of the Mamba block;
a⃗(t+1) ∈ R2F is a weight vector characterizing a single-layer feedforward NN, while σ and ρ are
non-linearities. Furthermore, (·)T denotes transposition, while || represents concatenation. Since the
Mamba block already calculates linear projections of the input features via state-expansion, W can
be optional, as a⃗ alone should be sufficient for adding learnability to the computation of the attention
coefficients. For this report, however, we utilize the entire GAT block.

Our goal here is to use the attention mechanism to aggregate the node features, while the SSM
dynamics handles the latent space updates. One can relate this to the MPNN steps listed in Section 1.1

5



Mamba

L
in

e
a

r

σ

D
ro

p
o

u
t

Learned / Fixed

Aggregation

L
in

e
a

r

σ

D
ro

p
o

u
t

Skip Connection

Node Features

Skip Connection

D
ro

p
o

u
t

x L

L
in

e
a

r 
(b

ia
s
=0

)

Edge Features

(Adjacency Matrix)
Dynamic Graph

Figure 4: An (ST)EGM Block. Here, σ denotes SiLU non-linearity, while the aggregation can be
fixed (sum, max, mean) or learned. L designates the number of EGM blocks or layers. The edge
features are passed through a bias-free Linear layer for dynamic graphs.

Table 1: Dataset Information (Static graphs)

Name #nodes #edges #features #classes
Cora 2,708 10,556 1,433 7

CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 88,648 500 3

– message generation, aggregation, and update, (Eqs. 1, 2, and 3). The SSM dynamics combines the
message generation and update steps, while the shared attention mechanism combines the update and
aggregation steps. After evolving the graph for L time steps, we obtain the final graph representation,
XL = [xL

1 , . . . , x
L
N ]T , which can be used for various downstream tasks. Similar to MPNNs, we use

a learned READOUT to obtain the final output, O = READOUT(XL), via a single Linear layer. To
extend this model to dynamic or spatio-temporal graphs, we apply a bias-free Linear layer to the
edge-feature-weighted adjacency matrix of the graph (cf. Node Adaptive Parameter Learning from
AGCRN). We expect that the effectiveness of Mamba as a long-range seq2seq block will enable EGM
to model temporal dependencies in dynamic graphs.

Figure 4 shows a single (ST)EGM block. It can be stacked analogously to other MPNN blocks like
GCN to allow information flow between multi-hop neighbourhoods. The following section describes
the experiments performed using the (ST)EGM layers and discusses the corresponding results.

4 Experiments & Results

Due to time constraints for this report, we test the effectiveness of our approach on only the Planetoid
(Cora, Citeseer, and Pubmed) datasets [2], that comprise citation networks in various domains, with
the nodes in the graphs representing academic documents and the edges characterizing citation links,
for the static case. For the dynamic graph setting, we evaluate the model on a real world dataset
provided by the California Transportation Agencies (CalTrans) Performance Measurement System
(PeMS) – PeMS08. PeMS08 is a collection of traffic flow measurements taken between July and
August 2016 from 170 loop detector sensors placed on 8 roads in California. In total, there are 17,856
snapshots, at 5-minute intervals. The task is to forecast traffic flow 12-steps (or, 1 hour) into the
future. The edge features in the 170-node sensor graph are formed using pairwise road network
distances between the sensors [14]. We used the Planetoid dataset class from PyTorch Geometric3 to
load the data, as it comes with pre-made binary masks for the training, validation, and tests splits.
Table 1 summarizes the details of the Planetoid datasets. These datasets are relatively fast to train on,
enabling us to iterate on the design of our network architecture at a fast rate.

3https://pytorch-geometric.readthedocs.io/en/latest/
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Table 2: Training Information. (*) indicates the best-performing component.

Loss Function CrossEntropy
(ST)EGM Loss Function(s) MSELoss, MAELoss, RMSELoss, HuberLoss (*)

Scheduler ExponentialLR (*), LambdaLR (*), LinearLR, OneCycleLR
Optimizer RAdam (*), Adam (*), AdamW

Weight Decay 0.0005

Learning Rate [0.0001, 0.01]

EGM Layers {1, 2, 3, 4, 6, 8}
(ST)EGM Layers {1, 2, 3, 4, 6}

Epochs [50, 500]

The previously mentioned MPNN models – GCN, GAT, GATv2, GraphSAGE, and GIN, serve as
the baselines for comparison in the static case. Specifically, we train all these models for the node
classification task. For the dynamic case, we compare against published results for the aforementioned
models – DCRNN, STGCN, GWNet, STSGCN, AGCRN, STAEformer and STWave, as reported by
the authors of the STAEformer and STWave papers.

As depicted in Fig. 4, we use interleaved skip connections, SiLU activation, and dropout layers to
facilitate stable training for our EGM model. To further stabilize training, we use Layer Normalization
[21] between the EGM layers. Here, the Mamba block is taken from the mamba-ssm4 Python library
by the original Mamba authors. The rest of the model has been implemented from scratch in PyTorch5

and PyTorch Geometric. Table 2 outlines the remaining training-related information. We use
CrossEntropy as the loss function for the static graphs, as the task is multi-class node classification,
while we trialed several loss functions for the dynamic graph forecasting task, ultimately finding
HuberLoss [22], which is a smoothed, thresholded version of mean absolute error, to be the best
performing. Note that we use the RAdam optimizer instead of Adam or AdamW, as RAdam constrains
the variance of the adaptive learning rate during the early stages of the training [23], which leads to
more stable training during the initial epochs in our experiments.

We experiment with different numbers of EGM layers, but for every comparison, we maintain a
similar structure for all the models with an unconstrained parameter budget. Note that, due to time
limitations, no hyperparameter search was performed for any of the models. Each experiment was
run with 3 - 5 different seeds (depending on dataset-dependent VRAM requirement), and the mean
and standard deviation of the test accuracy were computed. In total, roughly 600 experiments were
conducted and tracked on WandB67, resulting in a total of 1,743 runs. In the next section, we compare
against the aforementioned baselines and discuss the results of this work.

5 Results & Discussion

In this section, we present the results of the experiments conducted using our approach on the
Planetoid and PEMS08 datasets.

The performance plots depicted in Fig. 5 demonstrate that EGM achieves comparable results to other
MPNN baselines on static graph datasets. Its performance falls within the standard deviation range
of other models across all datasets we could test. Interestingly, we observe that employing fixed
aggregation functions, such as mean, sum, and particularly max, yields superior results compared
to learned aggregation schemes that integrate message-passing. This observation is illustrated in
Figure 6(a). Additionally, this suggests that the previously proposed GAT-based aggregation method
may not be suitable for our model. A probable cause here could be the potential over-smoothing of
node features, as the learned aggregators in our setup incorporate their own aggregation schemes,
except for simpler aggregators like GIN or GCN. Furthermore, as depicted in Fig. 6(b), the accuracy

4https://github.com/state-spaces/mamba
5https://pytorch.org/
6https://wandb.ai/js-exps/graphmamba
7https://wandb.ai/js-exps/stgraphmamba
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Figure 5: Performance comparison of our model (EGM) with baselines on the Planetoid datasets.
Here, mlp is a simple multi-layer perception model with sum aggregation.
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Figure 6: Different experiments performed on the EGM architecture
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Figure 8: Accuracy scores after ablating the Mamba block from the EGM block. Unexpectedly, the
performance without Mamba is comparable to the complete EGM architecture (cf. Figure 5).

Table 3: Performance on PEMS08 (Baselines reported via STAEformer [19] & STWave [18])
Metric MAE RMSE MAPE

DCRNN 15.22 24.17 10.21%
STGCN 16.08 25.39 10.60%
GWNet 14.40 23.39 9.21%

STSGCN 17.13 26.80 10.96%
AGCRN 15.32 24.41 10.03%
STWave 13.42 23.40 8.90%

STAEformer 13.46 23.25 8.88%
STEGM (Untuned) 21.44 33.09 13.62%
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Figure 9: Loss curves after ablating different parts of the STEGM block. In particular, note the better
training with the Mamba block present.
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of our model notably decreases as the number of layers increases. While over-smoothing may
contribute to this phenomenon too, we also observed large activations in the Mamba block beyond a
certain number of layers (> 3), suggesting that the Mamba block struggles to learn stably. This is at
odds with Graph Transformer networks, which can effectively learn on graphs (albeit when nodes
are treated sequentially) with as many as six layers [11]. To further analyze this, we explored the
potential of more sophisticated normalization schemes, such as RMS Layer Normalization [24] and
Spectral Normalization [25], that should, in principle, stabilize the training by rescaling the impact of
large activations on weight updates. However, as depicted in Fig. 7, the rescaling does not have an
impact on the performance drop-off, especially for deeper models (L > 4).

Importantly, we made an intriguing observation during ablative experiments on the Mamba block.
As depicted in Fig. 8, removing the Mamba block from our architecture, i.e., excluding the block
from Fig. 4, does not significantly alter the overall performance. This suggests that the Mamba block
may not be training effectively on these datasets. An alternative perspective on removing the Mamba
block from EGM is to consider the GIN update equation [12]:

h(l)
v = MLP(l)

((
1 + ϵ(l)

)
· h(l−1)

v +
∑

u∈N (v)
h(l−1)
u

)
. (19)

Here, l represents a GNN layer, and (1 + ϵ(l)), with a learnable ϵ, acts as a pointwise transformation
of the node embeddings. We can replace this with another Linear layer, making Eq. 19 analogous to
learning a transformation for a node embedding via an MLP. Similarly, when the Mamba block in
Fig. 4 is ablated, the EGM block performs a related set of operations:

h(l)
v = h(l)

v ⊕MLP(l)

(
MLP(l)(h(l−1)

v )⊕
∑

u∈N (v)
h(l−1)
u

)
. (20)

Here, we have replaced the + symbol with ⊕ to emphasize the pointwise sum. This discussion
indicates that the ablated EGM learns similarly to the GIN, explaining the good performance of the
simplified Mamba-less model.

As to why Mamba struggles to learn effectively, we propose that treating each node as having its own
sequence of states in a static graph (i.e., with a per-node sequence length of 1) contradicts Mamba’s
expectation of long sequences and an implementation detail that assumes the sequence length to be
the fastest-changing dimension8, thereby creating a bottleneck. It is unlikely that this bottleneck can
be alleviated for static graphs unless we transition to operating on a sequence of nodes, similar to
Graph Transformers, which, however, violates the graph inductive bias.

On the other hand, on dynamic graphs, as Table 3 illustrates, our model performs close to the state-to-
the-art models, although not quite surpassing them, which is primarily a result of the model being
unturned (i.e., no hyperparameter search). Moreover, as expected, the Mamba block plays an active
role in the model’s ability to learn on dynamic graphs, as elucidated by Fig. 9. This reinforces our
prior intuition from the midway report, that dynamic graphs are more natural to train on, than static
graphs, using our approach, as such graphs comprise a “sequence of graph-states”. Additionally, we
observe that the model was able to get good results with up to 6 blocks in the dynamic case (i.e.,
a deeper model on a much smaller graph), which further strengthens the notion of compatibility
between learning on dynamic graphs and our approach. In the next section, we conclude this work
and discuss directions for future research.

6 Conclusion & Future Work

In this report, we presented a new message-passing GNN architecture, which integrates Mamba-
based State Space Models (SSMs) into Graph Neural Networks (GNNs). We began by outlining the
message-passing graph neural network framework and introducing Mamba in the context of efficient
long-range sequence modeling. We then suggested a formulation for incorporating Mamba into GNNs
and performed several experiments to test whether our approach is viable and effective. Our proposed
formulation, “Expressive Graph Mamba” (EGM), involves leveraging Mamba’s SSM dynamics to
facilitate message creation or node state evolution in graph-structured data, while employing standard
unlearned or learned aggregation techniques for message passing between nodes. We also provided a

8https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_
interface.py#L192
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simple extension of this model to dynamic graphs. To validate the feasibility and performance of
our approach, we conducted comprehensive experiments on the Planetoid & PEMS08 datasets. Our
experimental results show that the (ST)EGM model effectively learns node representations on small
static & dynamic graphs. However, we struggled with scaling the EGM model on static graphs beyond
a few layers, due to the training becoming increasingly unstable. This is a primary limitation of our
EGM architecture, which is only partly mitigated using specific normalization schemes and skip
connections, leading to stochastic training behavior, particularly for deeper networks. Furthermore,
our experiments revealed that despite the incorporation of Mamba, the model’s performance on
static graph datasets did not demonstrate significant improvements, likely due to the sequence length
bottleneck for static graphs.

Future Work We plan to expand the testing of our approach on dynamic graphs using the Temporal
Graph Benchmark (TGB) [26], to more holistically evaluate the scalability and adaptability of
the STEGM architecture. Additionally, we are setting up experiments on the Long Range Graph
Benchmark (LRGB) [27], which consists of large graph datasets, where nodes can have long-range
relationships. This might be a compatible scenario for EGM.

Another minor extension to our approach is to simplify the construction of the Mamba layer by using
only the primary structured SSM equations for state updates and by decoupling the remaining layers,
for example, linear projections and non-linearities, so that we can experiment with more modular
architectures. The goal here would be to work around or remove the sequence length bottleneck
due to the current way the Mamba block processes data. This would also allow us to examine the
importance of the selection mechanism on graph-based learning tasks.
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